Parametric and equilibrium studies of Methylene blue removal by adsorbents: Crude and modified Sorghum stems-based

Authors

  • N. SIFOUN University of Bouira
  • A-R. YEDDOU University of Akli Mohand Oulhadj
  • L-H NOURI University of Boumerdes
  • I. KHALFI University of Bouira

Keywords:

Methylene blue; Sorghum; Adsorption; Hydrochar; Kinetic; Isotherm.

Abstract

In the current study, we investigated the removal of Methylene Blue ‘MB’, a cationic dye, using adsorbents in their raw state 'R-S,' those chemically activated with KOH 'KOH-S,' and those produced via hydrothermal carbonization 'HC-S' (hydrochar). Sorghum fibers were employed as a lignocellulosic precursor to fabricate these adsorbents. Batch adsorption tests were carried out under different conditions, including: adsorbent dosage, solution pH, contact time and initial MB concentration. Furthermore, we studied adsorption kinetics and isotherms. The results obtained demonstrate that MB removal rates consistently exceeded 90 %. Furthermore, the pseudo-second order kinetic model exhibited excellent accord with the experimental data of the developed adsorbents. Regarding the selection of the MB adsorption isotherm model, our results indicate that the Langmuir model is the most suitable for describing adsorbents R-S and KOH-S. Conversely, the both models (Langmuir and Freundlich) are appropiate for the MB adsorption process by HC-S. According to the Langmuir model, the adsorption capacities were determined to be 25.265, 31.545, and 47.619 mg/g for R-S, KOH-S, and HC-S, respectively.

10.5281/zenodo.14890798

  In the current study, we investigated the removal of Methylene Blue ‘MB’, a cationic dye, using adsorbents in their raw state 'R-S,' those chemically activated with KOH 'KOH-S,' and those produced via hydrothermal carbonization 'HC-S' (hydrochar). Sorghum fibers were employed as a lignocellulosic precursor to fabricate these adsorbents. Batch adsorption tests were carried out under different conditions, including: adsorbent dosage, solution pH, contact time and initial MB concentration. Furthermore, we studied adsorption kinetics and isotherms. The results obtained demonstrate that MB removal rates consistently exceeded 90 %. Furthermore, the pseudo-second order kinetic model exhibited excellent accord with the experimental data of the developed adsorbents. Regarding the selection of the MB adsorption isotherm model, our results indicate that the Langmuir model is the most suitable for describing adsorbents R-S and KOH-S. Conversely, the both models (Langmuir and Freundlich) are appropiate for the MB adsorption process by HC-S. According to the Langmuir model, the adsorption capacities were determined to be 25.265, 31.545, and 47.619 mg/g for R-S, KOH-S, and HC-S, respectively.

Author Biographies

N. SIFOUN, University of Bouira

 

 

A-R. YEDDOU, University of Akli Mohand Oulhadj

 

 

L-H NOURI, University of Boumerdes

 

 

I. KHALFI, University of Bouira

   

References

Lestari, D-I.; Yuliansyah, A-T.; Budiman A. Adsorption studies of KOH-modified hydrochar derived from sugarcane bagasse for dye removal: Kinetic, isotherm, and thermodynamic study. Commun Sci Techol 2022, 7(1), 15-22.

Li, B.; Guo, J.; Lv, K.; Fan, J. Adsorption of methylene blue and Cd(II) onto maleylated modified hydrochar from water. Environ Pollut 2019, 254, 113014.

Hou, Y.; Huang, G.; Li, J.; Yang, Q.; Huang, S.; Cai, J. Hydrothermal conversion of bamboo shoot shell to biochar: Preliminary studies of adsorption equilibrium and kinetics for rhodamine B removal. J Anal Appl Pyrolysis 2019, 143, 104694.

Hazzaa, R & Hussein, M. Adsorption of cationic dye from aqueous solution onto activated carbon prepared from olive stones. Environ Technol Innovation 2015, 4, 36-51.

Shanmugam, B.K.; Easwaran, S.N., Mohanakrishnan, A.S.; Kalyanaraman, C.; Mahadevan, S. Biodegradation of tannery dye effluent using Fenton’s reagent and bacterial consortium: a biocalorimetric investigation. J Environ Manage 2019, 242, 106-113.

Al Ghouti, M-A & Al Absi, R-S. Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Sci Rep 2020, 10, 15928. doi.org/10.1038/s41598-020-72996-3.

The United States Pharmacopeial Convention. Methylene Blue. Retrieved from https://c.ymcdn.com/sites/www.aavpt.org/resource/resmgr/imported/methyleneBlue.pdf 2008.

Wekoye, J-N.; Wanyonyi, W-C.; Wangila, P-T.; Tonui, M-K. Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder. Environ Chem Ecotoxicol 2020, 2, 24-31.

Zereshki, S.; Daraei, P.; Shokri, A. Application of edible paraffin oil for cationic dye removal from water using emulsion liquid membrane. J Hazard Mater 2018, 356, 1-8.

Saleh T.A & Gupta V.K., Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 2012, 371, 101-106.

Abdolali, A.; Guo, W.S.; Ngo, H.H.; Chen, S.S.; Nguyen, N.C.; Tung, K.L. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresour Technol 2014, 160, 57-66.

Tran, T.H et al. Comparative study on methylene blue adsorption behavior of coffee husk-derived activated carbon materials prepared using hydrothermal and soaking methods. J Environ Chem Eng 2021, 9, 105362.

Sifoun, N. Abbas, M.; Yeddou, A-R.; Nouri, L-H.; Nadjemi, B. Removal in batch mode experiment of Methylene Blue onto trimming Wood of Orange Tree Equilibrium and Kinetics Studies. Algerian J Env Sci Technol 2018, 4:1, 654-663.

Sifoun, N.; Yeddou, A-R.; Nouri, L-H.; Chergui, A.; Nadjemi, B. Kinetic and thermodynamic studies of methylene blue adsorption on sorghum stems. Algerian J Env Sci Technol 2020, 6:3, 1526-1536.

Çatlıoğlu, F.N.; Akay, S.; Gözmen, B.; Turunc, E.; Anastopoulos, I.; Kayan, B.; Kalderis, D. Fe modifed hydrochar from orange peel as adsorbent of food colorant Brilliant Black: process optimization and kinetic studies. Int J Environ Sci Technol 2020, 17, 1975–1990.

Xiao, L-P.; Shi, Z-J.; Xu, F.; Sun, R-C. Hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 2012, 118, 619-623.

Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.M.; Fühner, C.; Bens, O.; Kern, J.; Emmerich, K.H. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2011, 2, 71-106.

Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioprod Biorefin 2010, 4, 160-177.

Mumme, J.; Eckervogt, L.; Pielert, J.; Diakité, M.; Rupp, F.; Kern, J. Hydrothermal carbonization of anaerobically digested maize silage. Bioresour Technol 2011, 102, 9255-9560.

Kambo, H. S & Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable Sustainable Energy Rev 2015, 45, 359-378.

Zhang, L.; Tan, J.; Xing, G.; Dou, X.; Guo, X. Cotton stalk-derived hydrothermal carbon for methylene blue dye removal: investigation of the raw material plant tissues. Bioresour Bioprocess 2021, 8:10.

Sevilla, M & Fuertes, A.B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon N Y 2009, 47, 2281-2289.

Touhami, D.; Zhu, Z.; Balan, W.S.; Janaun, J.; Haywood, S.; Zein, S. Characterization of rice husk-based catalyst prepared via conventional and microwave carbonisation. J Environ Chem Eng 2017, 5, 2388-2394.

Hasanah, M.; Wijaya, A.; Arsyad, F.S.; Mohadi, R.; Lesbani, A. Preparation of Hydrochar from Salacca zalacca Peels by Hydrothermal Carbonization: Study of Adsorption on Congo Red Dyes and Regeneration Ability. Sci Technol Indonesia 2022, 7, 372-378.

Hammoud, M.H.; Hussein, A.A.; Fawaz, Y.B.; Abdul Hamid, M.H.S.; Sheikh, N.S. Removal of Malachite Green Using Hydrochar from PALM Leaves. Sustainability 2023, 15, 8939. doi.org/10.3390/su15118939.

Haris, M.; Waqas Khan, M.; Paz-Ferreiro, J.; Mahmood, N.; Eshtiaghi, N. Synthesis of functional hydrochar from olive waste for simultaneous removal of azo and non-azo dyes from water. Chem Eng J Adv 2022, 9, 100233.

Tu, W.; Liu, Y.; Xie, Z.; Chen, M.; Ma, L.; Du, G.; Zhu, M. A novel activation-hydrochar via hydrothermal carbonization and KOH activation of sewage sludge and coconut shell for biomass wastes: Preparation, characterization and adsorption properties. J Colloid Interface Sci 2021, 593, 390-407.

El Ouadrhiri, F.; Elyemni, M.; Lahkim, A.; Lhassani, A.; Chaouch, M.; Taleb, M. Mesoporous Carbon from Optimized Date Stone Hydrochar by Catalytic Hydrothermal Carbonization Using Response Surface Methodology: Application to Dyes Adsorption. Int J Chem Eng 2021, 16. https://doi.org/10.1155/2021/5555406.

Tabassum, M.; Bardhan, M.; Novera, T-M.; Islam Md, A.; Jawad, A-H.; Islam, Md. A. NaOH-activated betel nut husk hydrochar for efficient adsorption of methylene blue dye. Water Air Soil Pollut 2020, 231, 398.

Tran, T.H.; Le, A.H.; Pham, T.H.; Nguyen, D.T.; Chang, S.W.; Chung, W.J.; Nguyen, D.D. Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Sci Total Environ 2020, 725, 138325.

Zhang, X.; Wang, Y.; Cai, J.; Wilson, K.; Lee, A.F. Bio/hydrochar Sorbents for Environmental Remediation. Energy Environ Mater 2020, 3, 453-468.

Islam, M.T.; Sultana, A.I.; Chambers, C.; Saha, S.; Saha, N.; Kirtania, K.; Reza, M.T. Recent Progress on Emerging Applications of Hydrochar. Energies 2022, 15(24), 9340. https://doi.org/10.3390/en15249340.

Ighalo, J.O.; Rangabhashiyam, S.; Dulta, K.; Umeh, C.T.; Iwuozor, K.O.; Aniagor, C.O.; Eshiemogie, S.O.; Iwuchukwu, F.U.; Igwegbe, C.A. Recent advances in hydrochar application for the adsorptive removal of wastewater pollutants. Chem Eng Res Des 2022, 184, 419-456.

Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Res Eng 2022, 16, 100678.

Cheng, L.; Ji, Y.; Liu, X. Insights into interfacial interaction mechanism of dyes sorption on a novel hydrochar: Experimental and DFT study. Chem Eng Sci 2021, 233, 116432.

Langergen, S & Svenska, B.K. Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 1898, 24, 1-39.

Ho, Y.S & Mckay, G. Pseudo-second order model for sorption processes. Proc Biochem 1999, 34, 451-465.

Langmuir, I. The constitution and fundamental properties of solids and liquids. J Am Chem Soc 1916, 38, 2221-2295.

Freundlich, H.M.F. Über die adsorption in lösungen. Z Phys Chem 1906, 57, 385-470.

Hall, K.R & Vermeylem, T. Pore-and solid diffusion kinetics in fixed bed adsorption under constant-pattern condition. Ind Eng Chem Fundam 1966, 5(2), 212-223.

Tran, H-N.; You, S-J.; Hosseini-Bandegharaei, A.; Chao, H-P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res 2017, 120, 88-116.

Seow, W.T & Lim, K.C. Removal of dye by adsorption: a review. Int J Appl Eng Res 2016, 11(4), 2675-2679.

Rizzi, V.; D’Agostino, F.; Fini, P.; Semeraro, P.; Cosma, P. An interesting environmental friendly cleanup: the excellent potential of olive pomace for disperse blue adsorption/desorption from wastewater. Dyes Pigm 2017, 140, 480-490.

Hameed, B.H.; Ahmad, A.L.; Latiff, K.N.A. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes Pigm 2007, 75, 143-149.

Moussavi, G & Khosravi, R. The removal of cationic dyes from aqueous solutions by adsorption onto pistachio hull waste. Chem Eng Res Des 2011, 89, 2182-2189.

Li, Y.; Wang, S.; Shen, Z.; Li, X.; Zhou, Q.; Sun, Y.; Wang, T.; Liu, Y.; Gao, Q. Gradient adsorption of methylene blue and crystal violet onto compound microporous silica from aqueous medium. ACS Omega 2020, 5(43), 28382-28392.

Rehman, M.U.; Manan, A.; Uzair, M.; Khan, A.S.; Ullah, A.; Ahmad, A.S.; Wazir, A.H.; Qaz, I.; Khan, M. A Physicochemical characterization of Pakistani clay for adsorption of methylene blue: Kinetic, isotherm and thermodynamic study. Mater Chem Phys 2021, 269, 124722.

Medhat, A., El-Maghrabi, H.H., Abdelghany, A., Abdel Menem, N.M., Raynaud, P., Moustafa Y.M., Elsayed, M.A., Nada, A.A. Efficiently activated carbons from corn cob for methylene blue adsorption. Appl Surf Sci Adv 2021, 3, 100037.

Zhou, Y.M.; Fu, S.Y.; Zhang, L.L.; Zhan, H.Y.; Levit, M.V. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr Polym 2014, 101, 75-82.

Dawood, S & Sen, T.K. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res 2012, 46, 1933-1946.

Kuang, Y.; Zhang, X.; Zhou, S. Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification. Water 2020, 12, 587. doi:10.3390/w12020587.

Holliday, M.C.; Parsons, D.R.; Zein, S.H. Microwave-Assisted Hydrothermal Carbonisation of Waste Biomass: The Effect of Process Conditions on Hydrochar Properties. Processes 2022, 10, 1756. doi.org/10.3390/pr10091756.

Ferrentino, R.; Ceccato, R.; Marchetti, V.; Andreottola, G.; Fiori, L. Sewage Sludge Hydrochar: An Option for Removal of Methylene Blue from Wastewater. Appl Sci 2020, 10, 3445. doi:10.3390/app10103445.

Khoshbouy, R.; Takahashi, F.; Yoshikawa, K. Preparation of high surface area sludge-based activated hydrochar via hydrothermal carbonization and application in the removal of basic dye. Environ Res 2019, 175, 457-467.

Saha, N.; Volpe, M.; Fiori, L.; Volpe, R.; Messineo, A.; Reza, M.T. Cationic Dye Adsorption on Hydrochars of Winery and Citrus Juice Industries Residues: Performance, Mechanism, and Thermodynamics. Energies 2020, 13, 4686. doi:10.3390/en13184686.

Lonappan, L.; Rouissi, T.; Das, R.K.; Brar, S.K.; Ramirez, A.A.; Verma, M.; Surampalli, R.Y.; Valero, J.R. Adsorption of methylene blue on biochar microparticles derived from different waste materials. Waste Manage 2016, 49, 537-544.

Liu, Q.; Li, Y.; Chen, H.; Lu, J.; Yu, G.; Möslang, M.; Zhou, Y. Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J Hazard Mater 2020, 382, 121040.

Tang, R.; Dai, C.; Li, C.; Liu, W.; Gao, S.; Wang C. Removal of Methylene Blue from Aqueous Solution using Agricultural Residue Walnut Shell: Equilibrium, Kinetic, and Thermodynamic Studies. J Chem 2017, 1-10. doi.org/10.1155/2017/8404965.

Parametric and equilibrium studies of Methylene blue removal by adsorbents: Crude and modified Sorghum stems-based

Downloads

Published

2024-12-17

How to Cite

N. SIFOUN, A-R. YEDDOU, L-H NOURI, & I. KHALFI. (2024). Parametric and equilibrium studies of Methylene blue removal by adsorbents: Crude and modified Sorghum stems-based. Algerian Journal of Chemical Engineering AJCE, 2(VOL 2), 47–59. Retrieved from http://www.journal.acse.science/index.php/ajce/article/view/270